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Mice with a functional human immune system have the potential
to allow in vivo studies of human infectious diseases and to enable
vaccine testing. To this end, mice need to fully support the de-
velopment of human immune cells, allow infection with human
pathogens, and be capable of mounting effective human immune
responses. A major limitation of humanized mice is the poor de-
velopment and function of human myeloid cells and the absence of
human immune responses at mucosal surfaces, such as the lung. To
overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/
GM-CSF KI) mice. These mice faithfully expressed human GM-CSF
and IL-3 and developed pulmonary alveolar proteinosis because of
elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF
KI mice engrafted with human CD34+ hematopoietic cells had
improved human myeloid cell reconstitution in the lung. In particu-
lar, hIL-3/GM-CSF KI mice supported the development of human
alveolar macrophages that partially rescued the pulmonary alveolar
proteinosis syndrome. Moreover, human alveolar macrophages
mounted correlates of a human innate immune response against
influenza virus. The hIL-3/GM-CSF KI mice represent a uniquemouse
model that permits the study of human mucosal immune responses
to lung pathogens.

Mice with components of the human immune system hold
great promise for studying the human immune system in

vivo and for proof-of-concept testing in vaccine and drug de-
velopment (1–4). Human immune-system mice are generated by
transplantation of a severely immunodeficient mouse strain [such
as Rag2 KO IL-2R gamma (Il2rg) KO mice] with human hema-
topoietic stem and progenitor cells (5–10). Compared with non-
human primates, human immune-system mice have the advan-
tages of a small animal model: that is, they allow more versatile
experimentation, are more accessible to the research community,
and are ethically less debatable. Most importantly, experimental
findings derived from these mice might be more relevant and
applicable to humans as infection with human-specific pathogens
and the study of human-specific immune responses are now be-
coming feasible (6, 11). Although much progress has been made
in recent years, current human immune-system mice models have
several major limitations, such as the poor development, mainte-
nance, and function of human myeloid cells. As a consequence,
human immune responses at mucosal surfaces, such as the lung,
have rarely been observed.
The mouse host represents a nonphysiological environment for

human cells. Several mouse cytokines, such as IL-3 and GM-CSF,
do not act on the human cognate receptors. In addition, Rag2−/−

Il2rg−/− mice have an intact mouse myeloid compartment, and
human myeloid cells might have a competitive disadvantage rel-
ative to host cells. To overcome these limitations, we decided to
generate human cytokine knock-in (KI) mice where mouse cyto-
kines are replaced by their human counterparts. Criteria for cy-
tokine replacement are: (i) mouse cytokine does not or weakly act
on human cells; (ii) human cytokine does not or weakly act on

mouse cells to confer competitive advantage to human cells; (iii)
human cytokine is not exclusively produced by hematopoietic
(transplanted) cells; and (iv) lack of mouse cytokine is not lethal
to mouse host or human KI cytokine is sufficiently cross-reactive
to rescue the mouse knockout (KO) phenotype. The KI strategy
should allow faithful expression in appropriate organs and at
physiologic concentrations. Importantly, in homozygous KI mice,
human cognate receptor-expressing cells should gain a competi-
tive advantage over the respective mouse cells.
IL-3 and GM-CSF are two cytokines crucial for myeloid cell

development and function. Neither cytokine is cross-reactive be-
tween human and mouse (2). IL-3 stimulates early hematopoietic
progenitors in vitro, but is dispensable for steady-state hemato-
poiesis in vivo (12). Similar to IL-3, GM-CSF is largely dispens-
able for steady-state hematopoiesis (13–15) and the same applies
to mice lacking both cytokines (16, 17). In contrast, GM-CSF is
required for inflammatory responses (such as the production
of proinflammatory cytokines by macrophages) and host defense
against pathogens (18). Moreover, GM-CSF is highly expressed
in the lung and important for lung homeostasis in vivo (19), as
demonstrated by the fact that GM-CSF KO mice develop pul-
monary alveolar proteinosis (PAP), which is characterized by
protein accumulation in the lung because of defective surfactant
clearance (13, 14). Alveolar macrophages from GM-CSF KO
mice have a defect in terminal differentiation, which leads to
impaired innate immunity to pathogens in the lung (19, 20).
We thus hypothesized that generating hIL-3/GM-CSF KI mice

would be valuable to support human myeloid cell reconstitution
and function, as well as human innate immune responses to lung
pathogens. We show here that these mice provide a substantial
improvement over current models of human immune-system
mice in terms of human alveolar macrophage development and
human immune responses in the lung.

Results
Validation of hIL-3/GM-CSF KI Mice. The genes encoding GM-CSF
(CSF2) and IL-3 (IL3) are closely linked (< 10 kb) on chromo-
somes 5 and 11 in humans and mice, respectively. This closeness
allowed us to replace the mouse with the human loci for both
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genes to generate hIL-3/GM-CSF KI mice (Fig. S1). Although
the human IL3 KI allele is under the control of mouse regulatory
elements, the human CSF2 KI allele remains under the control
of its human regulatory elements. We analyzed expression of
mouse and human GM-CSF mRNA by RT-PCR in hIL-3/GM-
CSF KI mice expressing one allele of each mouse and one allele
of each human gene, referred to as IL-3/GM-CSF “human/
mouse” (h/m) mice. Wild-type mice that only have the mouse
alleles of Il3 and Csf2 are referred to as IL-3/GM-CSF “mouse/
mouse” (m/m) mice. Human GM-CSF mRNA was expressed in
a similar pattern to its mouse counterpart, with highest expres-
sion in the lung (Fig. 1A). To confer a competitive advantage to
human hematopoietic cells, we generated homozygous KI mice
that express two alleles of human IL3 and CSF2, referred to as
IL-3/GM-CSF “human/human” (h/h) mice. Conventional and
quantitative RT-PCR analysis of lung tissue showed that h/h
mice express only human, but not mouse GM-CSF mRNA (Fig.
1 B and C). Human GM-CSF protein could be detected by
ELISA in the bronchoalveolar lavage fluid of h/h mice (Fig. 1D).
Both mouse and human IL-3 mRNA was highly expressed by
activated splenocytes from h/m mice, with low expression in
digested bone, but neither was expressed in the lung (Fig. S2A).
Human IL-3 (and GM-CSF) protein could be detected in super-
natants from activated splenocytes isolated from h/m mice (Fig.
S2B). We conclude that hIL-3/GM-CSF KI mice faithfully ex-
press human GM-CSF and IL-3.

Enhanced Human Inflammatory Responses in Engrafted hIL-3/GM-CSF
KI Mice. Human IL-3/GM-CSF KI mice were generated from
ES cells with one allele of both Rag2 and Il2rg already deleted.
Breeding onto the Rag2−/− Il2rg−/− (BALB/c × 129) background

then allowed engraftment with human CD34+ hematopoietic
cells. Human IL-3/GM-CSF h/m KI mice were engrafted with
CD34+ cells from cord blood, and h/hKImicewere engrafted with
CD34+ cells from fetal liver. Overall human CD45+ hematopoi-
etic cell chimerism in bone marrow, blood, and spleen was not
increased in hIL-3/GM-CSF KI mice (Fig. S3A). There were no
major differences in human T-cell development in the thymus
(Fig. S3B), as well as in the frequencies of humanT, B, and natural
killer (NK) cells in blood (Fig. S3C) and spleen (Fig. S3D). In
addition, the frequencies of human CD34+ hematopoietic stem
cells, CD34+CD33+ myeloid progenitor cells, total CD33+ mye-
loid cells, CD14+ monocytes/macrophages, and CD66+SSChi
granulocytes in the bone marrow were not significantly increased
in hIL-3/GM-CSF KI mice (Fig. S4A). The same was true for
human CD14+ monocytes/macrophages, CD11c+ dendritic cells
(DC), CD123+ plasmacytoid DC, and CD66+SSChi granulocytes
in the blood (Fig. S4B). Thisfinding applied to both h/m (engrafted
with cord blood CD34+ cells) and h/h mice (engrafted with fetal
liver CD34+ cells) under steady-state conditions. Finally, human
bone marrow cells from engrafted hIL-3/GM-CSF KI mice had
a similar capacity to form myeloid colonies in methylcellulose in
vitro (Fig. S4C). Our findings are consistent with results from KO
mouse studies showing that both IL-3 and GM-CSF are largely
dispensable for steady-state myelopoiesis (12–17).
In contrast, GM-CSF plays an important role in mediating

inflammatory responses (18). GM-CSF expression is induced
by inflammatory stimuli, which leads to the production of in-
flammatory cytokines (such as IL-6) by monocytes/macrophages
and to their recruitment to sites of inflammation. We observed
that human CD14+ monocytes from engrafted hIL-3/GM-CSF
KI mice had the highest expression of the GM-CSF receptor
α-chain (CD116) (Fig. S5A). Therefore, we focused on human
monocytes/macrophages in our analysis of engrafted hIL-3/GM-
CSF KI mice. First, we analyzed the inflammatory response of
human monocytes in engrafted hIL-3/GM-CSF KI mice. Sys-
temic inflammation was induced by intraperitoneal injection of
LPS. The frequency of circulating human CD14+ monocytes was
significantly increased in h/m compared with control m/m mice
after LPS injection (Fig. S5 B and C). Enhanced mobilization of
human monocytes in h/m mice was associated with increased
serum concentrations of human IL-6 after one and two injections
of LPS (Fig. S5D). These data indicate that hIL-3/GM-CSF KI
mice engrafted with human hematopoietic cells have enhanced
human inflammatory responses mediated most likely by human
myelo-monocytic cells.

Homozygous hIL-3/GM-CSF KI Mice Support the Development of
Human Alveolar Macrophages. The absence of mouse GM-CSF
leads to impairment of mouse alveolar macrophages, which
should favor reconstitution with human macrophages in homo-
zygous hIL-3/GM-CSF KI mice. In support of this, human GM-
CSF is highly expressed in the lung and bronchoalveolar lavage
of h/h mice, but mouse GM-CSF is lacking (Fig. 1). Mouse al-
veolar macrophages from nonengrafted h/h mice were enlarged
and had the typical “foamy” appearance (Fig. S6A), which has
been described for alveolar macrophages from GM-CSF KO
mice. GM-CSF KO mice develop PAP because of a defect in
surfactant clearance by alveolar macrophages that have a block
in terminal differentiation (19). Similarly to what has been
reported for GM-CSF KO mice, nonengrafted h/h mice de-
veloped features of PAP, such as the subpleural accumulation of
alveolar macrophages full of Periodic acid-Schiff (PAS)–positive
material (Fig. S6B). We conclude that nonengrafted h/h mice
show impaired differentiation of mouse alveolar macrophages
and develop PAP, and are therefore functionally equivalent to
GM-CSF KO mice.
Next, we examined the lung compartment of h/h mice after

engraftment with human hematopoietic cells. FACS analysis
showed that h/h mice had considerably more human CD45+ cells
in the bronchoalveolar lavage (Fig. 2 A and B). Quantitative RT-
PCR of lung tissue revealed that this increase in human cells

Fig. 1. Validation of human GM-CSF expression in nonengrafted hIL-3/GM-
CSF KI mice. (A) Representative RT-PCR analysis of GM-CSF mRNA expression
in various tissues from KI mice with one allele of human and one allele of
mouse Csf2 (h/m). Li, liver; Br, brain; Lu, lung; Mu, muscle; Sp, spleen; Th,
thymus; LN, lymph node; BM, bone marrow. (Lower) Specificity of primers to
detect human GM-CSF was verified by RT-PCR analysis of tissues from control
mice (m/m). Mouse ribosomal protein L13 (Rpl13) served as an endogenous
control. (B) RT-PCR analysis of GM-CSF mRNA expression in lungs from m/m
mice or homozygous KI mice expressing two alleles of human CSF2 (h/h)
(each n = 5). Mouse Rpl13 served as an endogenous control. NTC, no tem-
plate control. (C) Quantitative RT-PCR analysis of GM-CSF mRNA expression
as in B. GM-CSF expression was normalized to mouse Hprt (each n = 5). (D)
ELISA of human GM-CSF protein in bronchoalveolar lavage fluid recovered
from m/m or h/h KI mice (each n = 13). ND, not detectable. Each dot rep-
resents one mouse. Horizontal bars indicate mean values.
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consisted mainly of cells expressing mRNA for the human mye-
loid markers CD33, CD11b (ITGAM), CD11c (ITGAX), and
CD14 (Fig. 2 C and D). Furthermore, mRNA expression of hu-
man CD68, a maturemacrophagemarker that is mainly expressed
intracellularly, was markedly increased in engrafted h/hmice (Fig.
2E). This increase in h/h mice was associated with higher ex-
pression of two transcription factors that are expressed by alveolar
macrophages, namely PU.1 (SPI1) and peroxisome proliferator-
activated receptor-γ (PPARγ) (Fig. 2E). PU.1 is highly expressed
in terminally differentiated alveolar macrophages in a GM-CSF–
dependent manner (20). Importantly, transduction of GM-CSF
KO alveolar macrophages with PU.1 in vitro reverses their func-
tional impairment (20). PPARγ is also highly expressed in alveolar
macrophages and, similarly to GM-CSF KO mice, PPARγ KO
mice develop PAP (21). Immunohistological staining of lung
sections revealed the presence of numerous hCD68+ cells with
a typical intra-alveolar location, consistent with human alveolar
macrophages, in engrafted h/h mice (Fig. 3). In contrast, very few
human alveolar macrophages could be detected in engrafted m/m
control mice. In summary, lungs of CD34+ hematopoietic cell
transplanted h/h mice show markedly improved reconstitution
with human macrophages.

Human Hematopoietic Cells Partially Rescue PAP in Homozygous hIL-
3/GM-CSF KI Mice. We then asked if the increased engraftment of
h/h mice with humanmacrophages leads to better human immune
function in the lung. To demonstrate that human alveolar mac-
rophages are functional, we first examined if human alveolar
macrophages can rescue the PAP syndrome that is found in
nonengrafted h/h mice. Although both type II alveolar epithelial
cells and alveolar macrophages can respond to GM-CSF, PAP
can be rescued by bone marrow transplantation (22). This finding
indicates that hematopoietic cells, specifically alveolar macro-
phages, are the main cell type being able to reverse PAP. There-
fore, we hypothesized that h/h mice engrafted with human
hematopoietic cells should have less severe PAP. Consistent
with our hypothesis, engrafted h/h mice had significantly lower
amounts of total protein in the bronchoalveolar lavage fluid than
nonengrafted h/h mice (Fig. 4A). In addition, although non-

engrafted h/h mice showed intra-alveolar accumulation of PAS-
positive material (Fig. 4B), which is a hallmark of PAP, engrafted
h/h mice had less severe protein accumulation in the lung
(Fig. 4B). These results indicate that engrafted human hemato-
poietic cells (presumably alveolar macrophages) are capable of
at least partially rescuing PAP in homozygous hIL-3/GM-CSF KI
mice, thereby contributing to lung homeostasis under steady-state
conditions.

Homozygous hIL-3/GM-CSF KI Mice Mount Correlates of a Human
Innate Immune Response to Influenza A Virus. In addition to their
role in lung homeostasis, alveolar macrophages are essential for
host defense in the lung. Alveolar macrophages are the main
producers of type I IFN after infection with pulmonary viruses
(23) and are required for an effective innate response to in-
fluenza A (24). Numerous studies have shown that GM-CSF KO
mice are more susceptible to a variety of pathogens in the lung

Fig. 2. Homozygous hIL-3/GM-CSF KI mice have enhanced human myeloid cell reconstitution in the lung. (A) Representative flow cytometry analysis of
bronchoalveolar lavage cells from nonengrafted and engrafted m/m and h/h KI mice. Numbers next to outlined areas indicate the percentages of hCD45+ and
mCD45+ hematopoietic cells. The mCD45+ cells have high autofluorescence and constitute F4/80+ mouse alveolar macrophages (Fig. S6A). (B) Numbers of
human hematopoietic (hCD45+) cells in bronchoalveolar lavage from engrafted m/m and h/h KI mice. Results are combined from three independent ex-
periment (total n = 15 per group). (C–E) Quantitative RT-PCR analysis of human lymphoid (C), myeloid (D), and macrophage (E) gene expression in lung tissue
from engrafted m/m and h/h KI mice. Expression was normalized to mouse Hprt. Results are combined from three independent experiments (total, n = 10 per
group). Each dot represents one mouse. Horizontal bars indicate mean values.

Fig. 3. Homozygous hIL-3/GM-CSF KI mice support the development of
human alveolar macrophages. Immunohistochemistry of lung tissue sections
stained for human CD68 from nonengrafted and engrafted m/m and h/h KI
mice. Magnification: 200×. One representative example of a total of 12 mice
analyzed per group in two independent experiments is shown.
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(19, 20). Furthermore, administration of recombinant human
GM-CSF has a protective effect in mice infected with influenza
A virus (25). To assess the contribution of engrafted human al-
veolar macrophages to lung host defense, we therefore infected
engrafted h/h mice with influenza A/PR8 (H1N1) virus via the
intranasal route and measured production of human cytokines.
Consistent with enhanced human alveolar macrophage recon-
stitution, engrafted h/h mice expressed significant amounts of
human GM-CSF, TNF-α, and IL-6 mRNA in the lung after in-
fection with influenza A virus (Fig. 5A). Importantly, engrafted
h/h mice had 100-fold higher expression of human IFN-β mRNA
after infection and compared with engrafted m/m mice (Fig. 5A).
In contrast, engrafted m/m mice showed no significant induction
of human cytokine mRNA expression after influenza A infection
compared with engrafted m/m mice that had received PBS in-
tranasally (Fig. 5A). In addition, engrafted h/h mice expressed
significantly higher amounts of human GM-CSF and IL-6 pro-
tein in the lung than engrafted m/m mice 72 h postinfection (Fig.
5B). The majority of engrafted h/h mice (9 of 14 mice) also had
detectable levels of human IL-6 protein in the serum, but none of
the engrafted m/m mice (0 of 10 mice) had detectable levels. IL-
6 plays an important role in host defense against influenza virus,
as shown by the increased mortality of IL-6 KO mice after in-
fluenza infection (26). Therefore, in contrast to m/m mice,
engrafted h/h mice are capable of mounting a human innate
immune response to influenza A virus. However, engrafted h/h
mice did not show enhanced protection against influenza virus
because viral burden was not reduced compared with engrafted
m/m mice (Fig. S7). Taken together, these data show that ho-
mozygous hIL-3/GM-CSF KI mice allow better human macro-

phage chimerism in the lung, which leads to improved lung
homeostasis under steady-state conditions and to enhanced hu-
man cytokine production in response to viral infection.

Discussion
The ability to study human tissue in an in vivo setting in mice has
opened a wide range of possible avenues of research. Major
limitations have hindered the application of the approach, and of
these one of the most important deficiencies has been the in-
ability of mouse factors to support human cells. Indeed, in the
immune system many essential factors required for human im-
mune cell development and function are species-specific and
cannot be effectively provided by the mouse. We therefore de-
cided to follow a strategy of replacing the mouse genes with their
human counterparts, enabling the better development and func-
tion of human cells and potentially disabling the same of the
corresponding mouse cells. By applying this concept to human
cytokine KI mice, we provide here proof of concept that re-
placement of immune genes in the mouse host with human genes
improves human immune-system mice.
Human cytokines can be delivered to human immune-system

mice by intravenous injection; for example, to boost human NK
cell and T-cell reconstitution by injections of IL-15/IL-15Rα
complexes (27) and IL-7 (28), respectively. Systemic expression
of human cytokines can also be achieved using a lentivirus-based
delivery system; for example, to enhance human T-cell reconsti-
tution by the expression of IL-7 (29). Another approach is the
hydrodynamic injection of plasmid DNA-expressing human
cytokines, which leads to transient expression in the liver. This
approach has recently been used to improve reconstitution of
human DC by hydrodynamic delivery of GM-CSF and IL-4 (30).
Finally, human cytokines can also be overexpressed as transgenes
in human immune-system mice. This approach has been used to
generate human IL-3/GM-CSF/stem cell-factor transgenic mice
(31). In these mice, human cytokine expression is driven by the
cytomegalovirus promoter, which leads to ubiquitous expression.
However, hIL-3/GM-CSF/stem cell-factor transgenic human
immune-system mice are hampered by reduced maintenance of
human hematopoietic stem cells in bone marrow and expanded
terminal myelopoiesis. In contrast to our study, no functional
responses of myeloid cells or in vivo responses to pathogens were
evaluated in the last two reports.
The hIL-3/GM-CSF KI mice described in this study represent

a considerable improvement over previous human immune-sys-
tem mice and the alternative approaches discussed above. First,
delivery of human IL-3 and GM-CSF by our KI strategy leads to
long-term cytokine expression, which circumvents the need for
repeated injections of expensive cytokines. Second, faithful ex-
pression in organs where IL-3 and GM-CSF are normally
expressed, is achieved. Under physiological conditions, GM-CSF
is mainly expressed in the lung (Fig. 1). In contrast, hydrody-
namic delivery leads to predominant expression in the liver and
in the circulation (30). In both liver and blood GM-CSF is not
normally expressed in steady-state conditions. Third, physiolog-
ical amounts of IL-3 and GM-CSF are expressed in KI mice
in contrast to delivery by hydrodynamic injection or ubiquitous
overexpression in hIL-3/GM-CSF/stem cell-factor transgenic mice.
Fourth, homozygous hIL-3/GM-CSF KI mice allow the simulta-
neous impairment of the mouse myeloid compartment because
mouse IL-3 and GM-CSF are not expressed in homozygous mice,
which leads to a competitive advantage for human myeloid cells,
as shown in the present study.
Despite increased human cytokine production, engrafted hIL-

3/GM-CSF KI mice did not show enhanced protection against
infection with influenza virus. This is likely because of several
reasons: (i) Influenza virus affects both human and mouse cells
and in humanized mice the lung epithelium is of mouse origin,
but the immune system consists of mouse (myeloid) and human
(myeloid and lymphoid) cells. Furthermore, our mouse strain
(BALB/c × 129 background) lacks a functional Mx gene, an
important IFN-induced resistance factor against influenza virus

Fig. 4. Human hematopoietic cells partially rescue PAP in homozygous hIL-
3/GM-CSF KI mice. (A) Quantification of total protein in bronchoalveolar
lavage fluid from nonengrafted (non) or engrafted m/m or h/h KI mice.
Results are combined from two independent experiments (total n = 10–11
per group). P = 0.0004 (one-way ANOVA testing). Values of P as determined
by Tukey’s Multiple Comparison Test are indicated by asterisks (**P < 0.01,
***P < 0.001). (B) PAS staining of lung tissue sections from nonengrafted or
engrafted m/m or h/h KI mice. Magnification: 400×. Representative examples
of a total of 10 to 12 mice analyzed per group are shown.
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(32). Therefore, although the (human) innate immune response
to influenza is enhanced in hIL-3/GM-CSF KI mice, this may not
lead to better protection because the mouse lung epithelium
lacks the antiviral Mx gene. (ii) Recovery from influenza in-
fection in mice is dependent on a functional adaptive immune
system. In current humanized mouse models (including hIL-3/
GM-CSF KI mice), human T- and B-cell responses are still
suboptimal. This could be another reason why the enhanced
human innate immune response in hIL-3/GM-CSF KI mice does
not translate into better protection. Future improvements of our
model by additional genetic modifications of the mouse host
(human cytokine and HLA KI) should lead to a humanized
mouse model with enhanced protection against influenza.
Apart from being a model for human immune responses to

lung pathogens, hIL-3/GM-CSF KI mice may be useful for
studying human autoimmune and inflammatory responses in the
lung that occur, for example, in asthma. Alveolar macrophages
have been implicated in preventing excessive immune responses
to inhaled antigens (24), and other cells that are important for
the immunopathology in asthma are also regulated by IL-3 and
GM-CSF: IL-3 plays a role in the biology of mast cells (33) and
GM-CSF regulates the differentiation of NKT cells (34). Future
refinements, such as the improvement of human T-cell (Th2)
responses and reconstitution of human lung epithelium (35) in
the mouse host, should therefore make a mouse model that
closely mimics human asthma a real possibility.
In summary, the hIL-3/GM-CSF KI mice presented in the

current study represent a considerable improved human immune
system mouse model that should serve as a versatile tool for
future studies.

Materials and Methods
Generation of hIL-3/GM-CSF KI Mice. For details see SI Materials and Methods.

RT-PCR. Total RNA was extracted from homogenized tissues with TRIzol re-
agent (Invitrogen) according to the manufacturer’s instructions. Equal
amounts of DNase-treated RNA were used for cDNA synthesis with the Su-
perScript First-Strand Synthesis System (Invitrogen). Conventional RT-PCR
was performed with the following primers: (i) Mouse Csf2: forward, CCA-
GTCCAAAAATGAGGAAGC; reverse, CAGCGTTTTCAGAGGGCTAT. (ii) Human
CSF2: forward, GGCGTCTCCTGAACCTGAGT; reverse, GGGGATGACAAGCA-
GAAAGT. (iii) Mouse Rpl13: forward, GTACGCTGTGAAGGCATCAA; reverse,
ATCCCATCCAACACCTTGAG. Quantitative RT-PCR was performed on a 7500
Fast Real-Time PCR system with primer-probe sets purchased from ABI. Ex-
pression values were calculated using the comparative threshold cycle
method and normalized to mouse Hprt.

Bronchoalveolar Lavage. Lungs were inflated with 1 mL PBS via a catheter
inserted into the trachea. This process was repeated twice and the recovered
lavage pooled. After centrifugation, cell-free supernatants were saved for
determination of GM-CSF protein concentration by ELISA or for total protein
content with the BCA Protein Assay Kit (Pierce) according to the manu-
facturer’s instructions. After RBC lysis with ACK lysis buffer (Lonza), cell
pellets were counted and either used for flow cytometry as above or for
cytospin preparations. Cells were spun onto slides and stained with Diff-Quik
Stain Set (Dade Behring) according to the manufacturer’s instructions.

Engraftment of Mice with Human Hematopoietic CD34+ Stem and Progenitor
Cells. Human cord blood and fetal liver samples were obtained under ap-
proval from the Yale University Human Investigation Committee from Yale-
New Haven Hospital and Albert Einstein Medical College, New York, re-
spectively. CD34+ cells were purified by density gradient centrifugation and

Fig. 5. Homozygous hIL-3/GM-CSF KI mice mount correlates
of a human innate immune response to influenza A virus. (A)
Quantitative RT-PCR analysis of human gene expression in
lung tissue from engrafted m/m and h/h KI mice 24 h after
intranasal infection with influenza A (PR8) (each, n = 8). In-
tranasal application of PBS was used as a control (PBS) (each,
n = 3–4). Expression was normalized to mouse Hprt. P <
0.0001 (hCSF2), P = 0.0004 (hTNF), P = 0.0007 (hIL6), P =
0.0171 (hIFNB1) (one-way ANOVA testing). (B) ELISA of hu-
man GM-CSF and IL-6 protein in lung tissue from engrafted
m/m and h/h KI mice 72 h postinfection with influenza A
(PR8) or intranasal application of PBS. Results are combined
from two independent experiments (total, n = 7–14 per
group). P < 0.0001 (hGM-CSF), P < 0.0001 (hIL-6) (one-way
ANOVA testing). Each dot represents one mouse. Horizontal
bars indicate mean values. Values of P as determined by
Tukey’s multiple comparison test are indicated by asterisks
(*P < 0.05, **P < 0.01, ***P < 0.001).
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immunomagnetic selection using CD34 microbeads (Miltenyi Biotec). New-
born pups were engrafted with human CD34+ cells as previously described
(6). Engraftment with human hematopoietic cells was determined 8 to
12 wk posttransplantation by retro-orbital bleeding and flow cytometry, as
described below. Mice used for experiments had blood engraftment levels
of ≥4% hCD45+ cells unless indicated otherwise. Matched mice (i.e., mice
engrafted with the same batch of CD34+ cells) were used for experiments.
Human IL-3/GM-CSF h/m KI mice were engrafted with CD34+ cells from cord
blood, and h/h KI mice were engrafted with CD34+ cells from fetal liver. Mice
were maintained under specific pathogen-free conditions and received
prophylactic antibiotics (Sulfatrim) in the drinking water to prevent oppor-
tunistic infections. All animal work was approved by the Yale University
Institutional Animal Care and Use Committee and conducted in accordance
with its regulations.

Histology and Immunohistochemistry. After perfusion with 10 mL cold PBS
lungs were harvested and fixed in 10% neutral-buffered formalin or Zinc
Fixative (BD Biosciences) for histological analysis. Paraffin-embedded tissues
sections were prepared, stained with H&E or PAS, or processed for immu-
nohistochemistry by the Yale Pathology Tissue Services. Anti-human Ab
CD68 (PG-M1) (Dako) was used for immunohistochemistry.

Influenza A Infection.Mice were infected with 2 × 104 PFU of influenza A/PR8
(H1N1) virus via the intranasal route. Infection was performed by the in-

tranasal application of 50 μL virus stock diluted in PBS (or an equal volume of
PBS as a control) to mice that had been deeply anesthetized with anafane
(Ivesco). Lungs were harvested 24 h after infection for RNA extraction and
quantitative RT-PCR analysis as described above. Lung homogenates were
prepared in 1 mL 0.1% BSA/PBS for cytokine measurements by ELISA 72 h
postinfection.

Statistical Analysis. The nonparametric Mann-Whitney U test was used to
determine statistical significance between two groups (α = 0.05). For multi-
group comparisons, we applied one-way ANOVA with post hoc testing using
Tukey’s Multiple Comparison Test (α = 0.05). For data plotted on a loga-
rithmic scale the geometric mean is depicted, otherwise the arithmetic mean
is shown.
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